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ABSTRACT

The major objective of this study is to identify a simplified methodology to reconstruct
a secret that is distributed using Shamir’s Secret Sharing Scheme, and to use the derived
results to investigate implications on Advanced Encryption Standard. This thesis begins by
using existing mathematical conjectures to simplify a monic polynomial generated by the
dealer in a threshold secret sharing scheme. The second part of the thesis then identifies
the variable bounds that an individual (eavesdropper or outsider) can use to reconstruct the
secret by gathering just two shares out of multiple public shares. In conclusion, the findings
from the first two parts of the simplified secret sharing scheme can be effectively used to
identify weaknesses of side-channel attacks, and subsequently applied to improve on the
mechanics of Advanced Encryption Standard. Future work could include generalizing the
methodology to include non-monic polynomials, or exploring the use of prime coefficients
in the dealer-generated polynomial.
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Executive Summary

There are many secret sharing schemes and variations available to hide and reconstruct the
given secret. Shamir’s Secret Sharing Scheme, making use of linear Lagrange interpolation
on the dealer-generated polynomial, was used to reconstruct the secret from the stipulated
threshold number of participants’ shares. Such a scheme had been widely analysed by
mathematicians and computer scientists for potential weaknesses in the reconstruction of
the secret by an external eavesdropper.

The objective of this thesis report is thus to present a variation of Shamir’s threshold secret
sharing scheme by manipulating the dealer-generated polynomial into a simplified version
such that any eavesdropper can reconstruct the secret by gaining two public shares, instead
of the stipulated threshold level. The envisaged improvements would then be evaluated for
any impact on side-channel effects on the Advanced Encryption Standards.

Existing and famous mathematical conjectures (including Pillai’s conjecture, the Fermat-
Catalan conjecture, and Hall’s conjecture) were built upon to seek a potential weakness in
the security of the current secret sharing scheme. Essentially, the analysis aimed to reduce
the order of difficulty in reconstructing the secret. Assuming that the dealer-generated
polynomial is monic, it is then deconstructed by applying a composite linear function in
which two additional variables are introduced.

In general, assuming that the original form of the dealer-generated polynomial is f (x) =

a0 + a1x+ a2x2 + · · ·+ ak−1xk−1, by composing it with the linear function g(x) = x+α ,
the eventual form of the dealer-generated polynomial can be manipulated to be in the form
of f (x) = (x+α)k−b0, where both α and b0 are the two newly introduced variables. The
challenge then is reduced to finding the values of both α and b0.

It was postulated that an eavesdropper would be able to recover the secret by simply obtain-
ing two public shares, namely (x1,y1) and (x2,y2), from the multitude of available public
shares, and this could be achieved by determining the numerical boundaries for the variable
α . Specifically, all encompassing cases, without loss of generality, were considered to en-
sure that all possibilities were not neglected. The start state would be to take the difference
between the two y-values that were easily obtained. From there on, it is just a matter of
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manipulating the inequalities to screen out the boundaries of α . Once the boundaries of α

were found, then it would be trivial to try out the available choices for α , and subsequently
b0, and eventually the secret.

While this methodology does not allow for the absolute reconstruction of the secret as com-
pared to Lagrange interpolation, it presents an alternate methodology for an eavesdropper
to retrieve the secret using shares that are significantly less than the required threshold
number. The boundaries reduced the possibilities of the secret value from a near-infinite
number to a manageable cardinality size that could be derived through exhaustive means.
The crux is that as long as two shares are gathered together, the value of α can be derived
easily through exhaustive means. Once the value of α is found, then it remains trivial to de-
termine b0 through the equation yi = (xi+α)k−b0, where (xi,yi) are known public shares.
Subsequently, the secret is reconstructed to be f (0).

Therefore, it is important for the dealer to generate the polynomial with coefficients that do
not contain a common factor. From this thesis analysis, it was concluded that the common
factor, if accidentally found by an eavesdropper or outsider, can be used to reconstruct the
secret efficiently by using only two public shares.

Such findings pave the way for an alternate methodology to recover the secret with less-
than-expected available information. It effectively reduces the order of evaluating the
monic polynomial, since only linear algebra is involved. This stems from the motivation
that linear equations are easier to solve, and in cryptography, linearity presents a less se-
curity form for any eavesdropper to break through. Thus, for improved security, the dealer
should avold generating the polynomial using successive binomial integers as its polyno-
mial coefficients, further amplifying the importance of the dealer.

A lot of research had been focused on the perfect secret sharing scheme. While there are no
known weaknesses to Shamir’s Secret Sharing Scheme, many researchers had focused on
the computational inefficiency if the generated polynomial comprises large degrees. While
many improvised secret sharing schemes have proven more effective than Shamir’s Secret
Sharing Scheme, they have only been better under certain parameters; there is always a
trade-off with some parameter of the scheme.
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CHAPTER 1:
Introduction to Secret Sharing

Imagine you have been given the task of finding out the average salary of a room full of
N highly successful individuals. The obvious way is to sum up all the individuals’ salaries
and average the summation over the total number of people in the room. The problem is
that none of the individuals want to disclose their monthly income because such figures are
highly confidential and sensitive.

Here is a viable solution. Have Person A come up with a random number, say [α], and
Person A is to add his or her own salary to [α]. This new value is to be passed on to Person
B, who will then add his or her own salary to the new value received from Person A. Now,
Person B does not know how much Person A’s salary is, since he or she does not know
what random number [α] Person A has chosen.

The process repeats itself until the last person in the room, Person N, receives the new
value from the second-to-last person, Person N − 1. Person N continues to add on his
or her salary, and the final value, say [β ], is then passed back to Person A. At this stage,
Person A simply needs to deduct [α] from [β ] (since only he or she knows what [α] is), and
average this sub-total over the number of people in the room, N. In this way, the average
salary in the room can be obtained, without any person revealing his or her income.

The value of [α] is critical in this instance, as it provides a gateway to gather information
from multiple sources without each source revealing unwanted information that should
otherwise remain secret. For example, if any person in the room other than Person A would
know the value of [α], then he or she could find out Person A’s income by simply providing
the information to Person B and having Person B perform the arithmetic.

Consider another secret sharing example. A bank vault in a highly secured bank requires
three keys to open. The key holders are already designated to be two of the bank’s top hier-
archy. But strict financial regulations state that no one person should be in total possession
of the three keys, for fear of corruption. The logical partition would be to split the keys
between these two personnel. With both needing equal authority over the safekeeping of
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the bank vault, this constitutes a conundrum.

The two-man rule states that all actions and access requires the presence of two authorized
people at all times. In the bank vault secret sharing example, the logical way to follow this
rule is to let Person A hold on to Key 1 and Key 2, and Person B hold on to Key 2 and Key
3. In this way, no single person can open the bank vault (since the vault needs three keys),
and both authorized persons (given equal authority by holding two keys each) need to be
present in order to open the vault.

The methodology of sharing secrets (or, splitting secrets) was independently invented by
Adi Shamir [1] and George Blakley [2] in 1979. Being one of the most well-known and
dominant secret sharing schemes, in this thesis, Shamir’s Secret Sharing Scheme [1] is
mainly analysed.

1.1 Shamir’s Secret Sharing Scheme
Shamir’s Secret Sharing Scheme comprises the general distribution of shares to various
n participants, where each participant is holding on to a unique share. In order to re-
construct the secret, some or all of the parts are needed. Since gathering all the participants
to reconstruct the secret may be impractical, the threshold scheme is thus formulated where
any k parts will be sufficient to re-construct the secret. This is also known as the {k,n}
threshold scheme. If k = n, then all participants are required in order to reveal the secret.

In general, the secret S is divided into n pieces of data S1,S2, . . . ,Sn, in such a way that

• k or more Si shares is enough to piece together the secret.
• k− 1 or fewer Si shares is not enough to determine the secret (other than trying all

possibilities).

1.1.1 Secret Sharing Example using a Quadratic Polynomial
Assume that the secret value to be kept is 4,321 (i.e., S = 4,321), and the threshold scheme
is to be set as {3,7} (i.e., any subset of three shares out of the possible seven shares is
sufficient to construct the secret). Randomly, (k− 1) integers are picked to construct the
(k−1)th degree polynomial:

a1 = 69,a2 = 213.

2



The polynomial to produce the required number of secret shares is thus constructed to be

f (x) = 4321+69x+213x2. (1.1)

Since there are seven shares, seven points are then constructed from Eqn. (1.1). These
seven points are as follows:

Table 1.1: Seven Points Constructed from a Quadratic Polynomial

x y = f (x)

1 4603
2 5311
3 6445
4 8005
5 9991
6 12403
7 15241

In order to reconstruct the secret, any three shares are sufficient. Consider the following
three random points P0 = (x0,y0) = (1,4603); P1 = (x1,y1) = (3,6445); and P2 = (x2,y2) =

(5,9991). The theory of Lagrange polynomial interpolation is used to reconstruct the se-
cret:

l0(x) =
x− x1

x0− x1
.

x− x2

x0− x2
=

x−3
1−3

.
x−5
1−5

=
1
8
(x−3)(x−5),

l1(x) =
x− x0

x1− x0
.

x− x2

x1− x2
=

x−1
3−1

.
x−5
3−5

=−1
4
(x−1)(x−5),

l2(x) =
x− x0

x2− x0
.

x− x1

x2− x1
=

x−1
5−1

.
x−3
5−3

=
1
8
(x−1)(x−3).
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By Lagrange interpolation, the polynomial is recovered by using

f (x) =
2

∑
i=0

li(x) · yi

= [
1
8
(x−3)(x−5)]×4603+[−1

4
(x−1)(x−5)]×6445+[

1
8
(x−1)(x−3)]×9991,

= 4321+69x+213x2.

The constant coefficient (or a0) found to be equal to the initial secret value, and the secret
reconstruction is complete.

1.1.2 Secret Sharing Example Using a Cubic Polynomial
If a minimum of four shares were desired for the secret reconstruction for a {4,7} threshold
scheme, then a cubic polynomial will be formed. Consider the following example:

S = 36,a1 = 6,a2 = 4,a3 = 2.

The polynomial is now constructed as

g(x) = 36+6x+4x2 +2x3.

The seven points constructed from g(x) are as follows:

Table 1.2: Seven Points Constructed from a Cubic Polynomial

x y = g(x)

1 48
2 80
3 144
4 252
5 416
6 648
7 960

4



Since four shares are required, consider the following four random points P0 = (x0,y0) =

(1,48); P1 = (x1,y1) = (3,144); P2 = (x2,y2) = (5,416); and P3 = (x3,y3) = (7,960).

Lagrange interpolation is applied and the following is obtained:

l0(x) =
x− x1

x0− x1
.

x− x2

x0− x2
.

x− x3

x0− x3
=

x−3
1−3

.
x−5
1−5

.
x−7
1−7

=− 1
48

(x−3)(x−5)(x−7),

l1(x) =
x− x0

x1− x0
.

x− x2

x1− x2
.

x− x3

x1− x3
=

x−1
3−1

.
x−5
3−5

.
x−7
3−7

=
1
16

(x−1)(x−5)(x−7),

l2(x) =
x− x0

x2− x0
.

x− x1

x2− x1
.

x− x3

x2− x3
=

x−1
5−1

.
x−3
5−3

.
x−7
5−7

=− 1
16

(x−1)(x−3)(x−7),

l3(x) =
x− x0

x3− x0
.

x− x1

x3− x1
.

x− x2

x3− x2
=

x−1
7−1

.
x−3
7−3

.
x−5
7−5

=
1
48

(x−1)(x−3)(x−5).

The polynomial is then recovered by using

g(x) =
3

∑
i=0

li(x) · yi

= [− 1
48

(x−3)(x−5)(x−7))]×48+

[
1
16

(x−1)(x−5)(x−7)]×144+

[− 1
16

(x−1)(x−3)(x−7)]×416+

[
1
48

(x−1)(x−3)(x−5)]×960,

= 36+6x+4x2 +2x3.

The constant coefficient (or a0) is equal to the initial secret value, and thus the secret re-
construction is complete.

In general, in order to implement the {k,n} threshold scheme, a polynomial of degree k−1
is required. The degree k−1 polynomial will have k coefficients that can be recovered by
any system with any k equations.
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1.2 Formal Definitions for Abstract Algebra
In order to aid in the analysis of Shamir’s Secret Sharing Scheme (SSSS), and to simplify
the polynomials used in the scheme, it is necessary to define some basic theorems on linear
and abstract algebra. Much of the information can be obtained from related mathemati-
cal texts, such as John B. Fraleigh’s A First Course in Abstract Algebra [3]. The related
definitions from the text are extracted and presented here.

1.2.1 Abstract Algebra — Groups, Rings, Fields, Finite Fields
Definition 1.2.1. [3, pp. 37–39] A group < G,∗ > is a set G, closed under a binary
operation *, such that the following axioms are satisfied:
G1: For all a,b,c ∈ G, the associativity of *, (a∗b)∗ c = a∗ (b∗ c) holds.
G2: There is an element e in G such that for all x ∈ G, e∗ x = x∗ e = x. This is also known
as the identity element e for *.
G3: Corresponding to each a∈G, there is an element a′ ∈G such that a∗a′= a′∗a= e. This
means that the inverse of a exists. A group is abelian if its binary operation is commutative.

Definition 1.2.2. [3, pp. 167] The most general algebraic structure, ring < R,+, · >, is
a set R together with two binary operations + and ·, namely addition and multiplication,
defined on R such that the following axioms are satisfied:
R1: < R,+> is an abelian group.
R2: < R, ·> is associative, or monoid.
R3: For all a,b,c ∈ R, the left distributive law a · (b+ c) = (a ·b)+ (a · c), and the right
distributive law (a+b) · c = (a · c)+(b · c) hold.

Definition 1.2.3. [3, pp. 172–174] By extension, a field < F,+, · >, is a set F with
two binary operations, namely addition and multiplication, defined on F , and satisfies the
following axioms:
F1: < F,+> is an abelian group.
F2: < F∗, ·> is an abelian group.
F3: For all a,b,c ∈ F , the distributive law a · (b+ c) = (a ·b)+(a · c) holds.

Definition 1.2.4. [3, pp. 300] A finite field is thus a field with a finite number of elements.
It is known, and easy to show that, for every prime p, and positive integer n, there is exactly

6



one finite field (up to isomorphism) of order pn. [Usually], this field [denoted] GF(pn) is
referred to as the Galois field of order pn.

In general, since the identity condition is required to be different for addition and multipli-
cation, there must be at least two elements in every field. Some common examples include
Q, R, C, that is, the rational numbers, the real numbers, and the complex numbers, respec-
tively. It must be noted that Z, the integers, form only a ring. Thus, in this thesis, both the
integer ring Z, and the prime field Zp, where p is a prime number, are often referenced; the
latter is mainly due to the unique properties of prime numbers.

1.3 Research Objective
The purpose of this thesis is to analyse Shamir’s Secret Sharing Scheme and to identify
weaknesses and potential improvements, and to build upon them to discuss the side-channel
effects on the Advanced Encryption Standard (AES).

The following questions are asked:

• Can pre-existing conjectures and theorems be used to improve and/or weaken the
security and simplify the computational complexity of the present secret sharing
scheme?
• Can the improvements to the current secret sharing scheme prove to be beneficial in

strengthening/weakening AES encryption, such as side-channel analysis?
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CHAPTER 2:
Analysis of Shamir’s Secret Sharing Scheme

2.1 The Importance of the Dealer
For a {k,n} threshold scheme, the dealer computes the degree (k− 1) polynomial and
embeds the secret within the polynomial. The dealer also has to provide the public values
by computing the required outputs using certain inputs. The generated polynomial is of the
form

f (x) = a0 +a1x+a2x2 + · · ·+ak−1xk−1, (2.1)

where a0 is the secret and ai, 1≤ i≤ k−1, are chosen randomly.

2.2 Order of Difficulty in Reconstructing the Secret
In this thesis, it is assumed that the Lagrange interpolation to reconstruct the secret is
done over an integer ring. Performing arithmetic over the integer field Zp will, however,
improve on the computational efficiency, as is discussed later. For example, if the Lagrange
interpolation is done over the residue field Zp (that is, over modulo p), then the order of
computational complexity is O(pk).

2.3 Simplifying Secret Sharing Polynomials — Potential
Weakness?

The initial degree (k− 1) polynomial f (x) is created by the dealer. There is no way to
retrieve the secret unless at least k participants come together to reconstruct the secret
using Lagrange interpolation. A viable idea to improve the simplicity of the polynomial is
to introduce a composition of another function that may be easier to dissect with existing
mathematical tools.

Consider the following manipulation of the polynomial functions:

Let f (x) = h(x)◦g(x), where
f (x) is the degree (k−1) polynomial generated by the dealer;
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h(x) is the desired final simplified polynomial of the form (x−α)k−b0; and
g(x) is a linear function to be applied to h(x) to form the original polynomial.

Consider first the composite function g(x) = x+α , and the following is obtained. First,
it is desired to simplify f (x) to be in the form of f (x) = xk− b0, for some coefficients in
the dealer-generated polynomial. Hence, f (x) = h(g(x)) = h(x+α) = xk−b0. Therefore,
h(x) = f (x−α), and so,

h(x) = f (x−α) = (x−α)k−b0,

=

[
xk +

(
k
1

)
xk−1(−α)1 +

(
k
2

)
xk−2(−α)2 + · · ·+(−α)k

]
−b0,

=

[
xk +

k−1

∑
i=1

cixk−i +(−α)k

]
−b0,

(2.2)

where ci =
(k

i

)
(−α)i.

It is clear that the values of ci correspond to the coefficients of the original dealer-generated
polynomial.

If the value x = 0 is applied into the final form of Eqn. (2.2), the output will correspond
to the hidden secret, since it is known that the secret is the value of a0 in the original
polynomial generated by the dealer in Eqn. (2.1).

Therefore, from Eqns. (2.1) and (2.2), the secret can be derived as the coefficient without
any x terms:

Secret = a0 = (−α)k−b0. (2.3)

If the values of α and b0 are known, then the secret is unravelled. The challenge then, is to
find the values of α and b0, if they are unknown, in order to reconstruct the secret.

2.4 Finding the Values of α and b0
If the Lagrange interpolation is performed modulo p, then finding the value of α is of order
O(pk), and likewise for the finding of b0. Therefore, if both α and b0 are unknown, the
whole problem of finding both values escalates to order O(pk× pk) = O(p2k).
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The famous Pillai’s conjecture, and various other conditions related to the conjecture, are
used to simplify the range of values of both α and b0.
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CHAPTER 3:
Applying Pillai’s Conjecture to Secret Sharing 

Schemes

3.1 Pillai’s Conjecture (General)
Herschfeld (1936) [4] showed that the equation 3x− 2y = c, for |c| sufficiently large, has
at most a solution in positive integers x,y. In the same year, Pillai extended this result, by
considering the exponential Diophantine equation

ax−by = c,

and proved that there exists a finite number of positive integer solutions (a,b,x,y ∈ Z),
with x ≥ 2 and y ≥ 2, to this Diophantine equation [5], provided |c| > c0(a,b), for some
constant c0(a,b), which unfortunately is ineffectively computable. Pillai conjectured that
c0(3,2) = 13, this being proved in 1982 by Stroeker and Tijdeman [6], using methods based
on Baker’s linear forms in logarithms. The general Pillai’s conjecture (see Conjecture 3.1.1,
following) that gives an estimate for c0 will be mostly used to find a weakness in Shamir’s
Secret Sharing Scheme. The quantitative refinement of the already mentioned (general)
Pillai’s conjecture is also discussed by Waldschmidt [5].

Conjecture 3.1.1. For any ε > 0, there exists a constant κ(ε) > 0, such that, for any positive
integers a,b,x≥ 2,y≥ 2, with ax 6= by, then

|ax−by| ≥ κ(ε)×max(ax,by)(1−
1
x−

1
y−ε). (3.1)

3.2 Fermat-Catalan Conjecture
This conjecture was proposed based upon both Fermat’s Last Theorem, and Catalan’s con-
jecture. In 1995, Richard Taylor and Andrew Wiles [7] co-published an article thereby
proving Fermat’s Last Theorem.

Theorem 3.2.1. Fermat’s Last Theorem states that for any integer n that is greater than two,

13



there do not exist any three (strictly) positive integers a, b, and c that satisfy the equation
an +bn = cn.

Referencing Conjecture 3.1.1, in 2002, Mihăilescu [8] proved Catalan’s conjecture.

Conjecture 3.2.1 (Mihăilescu Theorem). The only solutions to the equation ax− by = 1
are 32 and 23.

The Fermat–Catalan conjecture combines the ideas of Fermat’s Last Theorem and Cata-
lan’s conjecture. In 1995, Darmon and Granville [9] proved the conjecture.

Conjecture 3.2.2. The equation am +bn = ck has a finite number of solutions that satisfy
the inequality 1

m + 1
n +

1
k < 1.

Definition 3.2.1. Two integers a and b are coprime if the only positive integer that evenly
divides both a and b is 1, that is, if their greatest common divisor, gcd(a,b) = 1.

3.3 Motivation
By Theorem 3.2.1 and Conjecture 3.2.2, it is inferred by Waldschmidt [5] that, ∀ε > 0,
∃κ(ε)> 0 such that

ax−by = c⇒ |ax−by| ≥ κ(ε)×max(ax,by)1− 1
x−

1
y−ε . (3.2)

From Catalan’s conjecture, the equation ax− by yields a constant c. This relationship is
used in conjunction with the Fermat-Catalan conjecture in Definition 3.2.2 to improve the
efficiency in recovering the secret in secret sharing schemes. The motivation is thus to
streamline the ranges between ax and by such that the maximum value between these two
components can be easily found. Coupled with the relationship that the power (1− 1

x −
1
y −

ε) is always < 1, the final value of |ax−by| will be even smaller. This will greatly reduce
the computational complexity involved.

Applications of this relationship are further discussed in the next chapter.
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CHAPTER 4:
Exploring Secret Sharing

4.1 Applying Fermat-Catalan Conjecture to Secret Shar-
ing Scheme

Consider the following analysis for the {k+1,n} threshold scheme.

Let f (x) be defined as the degree k polynomial generated by the dealer:

f (x) = a0 +a1x+a2x2 + · · ·+akxk, (4.1)

where a0 is the secret to be shared.

Assume that there exists α ∈ Zp, such that h(x) = f (x−α) = xk− b0 (consider that the
dealer-generated polynomial is monic — the case of non-monic polynomials can still be
dealt with, but one needs at least three shares to be known). In this case, the leading
coefficient ak of the highest degree term xk is 1.

Let f (x1), f (x2), ..., f (xn) be defined as the shares to be handed out, where f (xi) = yi. If
f (x1), f (x2), . . . , f (xn) are known, then the following can be inferred:

(x1−α)k−b0 = y1,

(x2−α)k−b0 = y2,

· · · · · · · · · · · · · · ·

(xn−α)k−b0 = yn.

It must be noted that any set of k+1 shares is sufficient to recover the secret, even though a
total of n shares are generated. This is the core essence of Shamir’s Secret Sharing Scheme.
However, under the assumption, it is possible to recover the secret with significantly fewer
shares, in this case, two.
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Taking the difference of any two equations, this leads to the generalized equation where b0

is eliminated:
(xi−α)k− (x j−α)k = yi− y j, (4.2)

where 1≤ i < j ≤ n.

Note that the right-hand side is known since those are the outputs generated and distributed
by the dealer to various participants.

Referencing the extension of Pillai’s Diophantine equation in Eqn. (3.1) leads to

|ax−by| ≥ κ(ε)×max(ax,by)1− 1
x−

1
y−ε .

Replacing ax with (xi−α)x, and by with (x j−α)y leads to

|(xi−α)x− (x j−α)y| ≥ κ(ε)×max(|xi−α|k, |x j−α|k)1− 1
x−

1
y−ε

.

For the purpose of secret sharing, let x = y = k, which results in

|(xi−α)k− (x j−α)k| ≥ κ(ε)×max(|xi−α|k, |x j−α|k)1− 1
k−

1
k−ε

.

Using Eqn. (4.2) in the left-hand side of the above inequality, it is finally deduced that
∀ε > 0, ∃κ(ε)> 0, such that

|yi− y j| ≥ κ(ε)×max(|xi−α|k, |x j−α|k)1− 2
k−ε

. (4.3)

4.2 Significance of κ(ε)

In 1970, Marshall Hall, Jr. [10], proposed to remove the value of κ(ε) for the quantitative
case when x = 3 and y = 2.

Conjecture 4.2.1. There exists an absolute constant C > 0 such that, for any pair of (x,y)
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of positive integers satisfying x3 6= y2,

|x3− y2|>C×max(x3,y2)
(1− 1

2−
1
3 ).

This is also known as Hall’s conjecture, which will be drawn upon to further simplify the
problem (for example, it is further believed that C ≤ 0.96598 . . .).

Presumably, κ(ε) is computable and quite small (e.g., see Bennett’s work on Pillai’s conjec-
ture [11], in particular when |a−b|= 1), so for this purpose, it is possible, for example, to
assume ε to be strictly less than 1− 2

k , in order to find the finite bounds for |xi−α|, |x j−α|
(see the analysis in the following sections) .

4.3 Forming the Inequalities to Find the Bounds for Com-
puting the Value of α

Focusing on the right-hand side of Eqn. (4.3), and assuming κ(ε) = 1, the following arith-
metic is performed on one of the terms:

(|x j−α|k)1− 2
k−ε

= (|x j−α|k)
k−2−kε

k = (|x j−α|)k−2−kε . (4.4)

From Inequality (4.3), it is inferred that

|x j−α|k−2−kε ≤ |yi− y j|,

|x j−α| ≤ |yi− y j|
1

k−2−kε . (4.5)

With this inequality, the complexity of the problem is now significantly reduced. It is now
reduced to simply finding the values of α from Eqn. (4.5), whereby the values of x j,yi,y j,k,
and ε are known, and are small enough to compute.

The order of computational difficulty is now reduced significantly from the initial order of
O(pk), or O(p2k) if there are two unknowns.

Applying (an extension of) Hall’s conjecture, whereby the value of ε is assumed to be 0,
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Eqn. (4.5) now reduces further to

(|x j−α|)≤ |yi− y j|
1

k−2 . (4.6)

4.4 Dissecting the Inequalities

It was assumed that ∃α such that h(x) = f (x−α) = xk−b0, for certain cases of the poly-
nomial form that was generated by the dealer.

Since f (x−α) = xk−b0, this can be rewritten as f (x) = (x+α)k−b0.

In a {k+1,n} threshold scheme, n shares are generated, namely (x1,y1),(x2,y2), · · · ,(xn,yn),
where yi = f (xi), for 1≤ i≤ n.

Consider the case where it is sufficient to pool together two known pairs (shares). There-
fore, the following is derived:

y1 = (x1 +α)k−b0,

y2 = (x2 +α)k−b0,

y1− y2 = (x1 +α)k− (x2 +α)k,

or,
y2− y1 = (x2 +α)k− (x1 +α)k.

Solving for the value of α is not trivial for large values of k, especially if k is prime. A
prime k, however, will allow performing finite field arithmetic to reduce the bounds of α ,
which is discussed later in greater detail.

For simplicity’s sake, the labels A := x1 +α , and B := x2 +α are applied, hence Ak =

(x1 +α)k, and Bk = (x2 +α)k. In addition, it is clear that (A−B) = (x1− x2).

The following identity is used

(Ak−Bk) = (A−B)× (Ak−1 +Ak−2B+ · · ·+ABk−2 +Bk−1),
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to infer
(y1− y2) = (x1− x2)× (Ak−1 +Ak−2B+ · · ·+ABk−2 +Bk−1),

y1− y2

x1− x2
= (Ak−1 +Ak−2B+ · · ·+ABk−2 +Bk−1).

It is obvious that the following inequality holds:

(|A|k−1 + |A|k−2|B|+ · · ·+ |A||B|k−2 + |B|k−1)≥ max(|A|k−1, |B|k−1). (4.7)

Eqn. (4.7) is now used to consider all possible cases of polarity for the values of A, B,
and parity for the values of k. Note that since k is a known positive value, and ≥ 2, it is
necessary to only consider cases where k is either even or odd. For the case where k = 2, it
is easy to find α since y1− y2 is just the difference of squares.

4.4.1 Case 1 — [A> 0,B> 0]
Without loss of generality (WLOG), assume that A > B (equality cases are impossible).
Therefore, the following is obtained:

y1− y2

x1− x2
= (Ak−1 +Ak−2B+ · · ·+ABk−2 +Bk−1),

y1− y2

x1− x2
≥ max(|A|k−1, |B|k−1) = |A|k−1,

y1− y2

x1− x2
≥ (|x1 +α|)k−1,

(
y1− y2

x1− x2
)

1
k−1 ≥ (|x1 +α|),

−(y1− y2

x1− x2
)

1
k−1 − x1 ≤ α ≤ (

y1− y2

x1− x2
)

1
k−1 − x1.

With the known values of x1, x2, y1, y2, and k, respectively, both lower bounds and upper
bounds of α are found.
For the case where both A and B are positive, the parity of k does not matter since applying
the same exponential power to both A and B does not change the comparison between
them. To be more encompassing, it is therefore necessary to consider different parity cases
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of the value of k, along with the polarities of both A and B. Instead of always assuming
that A > B for all cases (since the value of α is unknown at this point), the polarity of the
denominator (x1− x2) is also included in each individual case analysis.

4.4.2 Case 2 — [A< 0,B> 0] [k odd]
With these constraints, and since k is odd,

y2− y1 = Bk−Ak,

= Bk + |A|k,

≥ max(Bk, |A|k).

Again, WLOG, consider the case where Bk > |A|k:

y2− y1 ≥ max(Bk, |A|k)≥ Bk,

(y2− y1)
1
k ≥ B,

(y2− y1)
1
k ≥ |x2 +α|,

−(y2− y1)
1
k − x2 ≤ α ≤ (y2− y1)

1
k − x2.

With this, the lower and upper bounds of α can be found easily. It is impractical to reduce
Bk+ |A|k according to the identity that was mentioned earlier, as it would be indeterminable
whether B+ |A| would be a positive value, and hence the maximum inequality would not
apply.

4.4.3 Case 3 — [A> 0,B< 0] [k odd]
In this case, since k is odd, the following is obtained:

y2− y1 = Bk−Ak,

y1− y2 = Ak−Bk = Ak + |B|k ≥ |A|k,

(y1− y2)
1
k ≥ |A|,
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(y1− y2)
1
k ≥ |x1 +α|,

−(y1− y2)
1
k − x1 ≤ α ≤ (y1− y2)

1
k − x1.

This essentially gives similar results as Case 2, except for the value interchange between y1

and y2, and x1 being used as the variable difference in this case.

4.4.4 Case 4 — [A,B< 0] [k odd]

Consider the last case of odd k, with both parameters less than 0. The following is obtained:

y2− y1 = Bk−Ak,

=−|B|k + |A|k,

= |A|k−|B|k.

WLOG, assume that |A|> |B|. Therefore,

0 < y2− y1 = |A|k−|B|k,

= (|A|− |B|)× (|A|k−1 + |A|k−2|B|+ · · ·+ |B|k−1),

= (x1− x2)× (|A|k−1 + |A|k−2|B|+ · · ·+ |B|k−1),

≥ |A|k−1.

Thus,
y2− y1 ≥ |A|k−1,

(y2− y1)
1

k−1 ≥ |A|,

(y2− y1)
1

k−1 ≥ |x1 +α|,

−(y2− y1)
1

k−1 − x1 ≤ α ≤ (y2− y1)
1

k−1 − x1.

Case 4 now concludes the analysis for odd values of k. The analysis focus is now shifted
to even values of k.
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4.4.5 Case 5 — [A< 0,B> 0] [k even]

Since k is even, the following is obtained:

y2− y1 = Bk−Ak,

= Bk−|A|k.

WLOG, now assume that B> |A|. The following is obtained:

0 < y2− y1 = Bk−|A|k,

= (B−|A|)× (Bk−1 +Bk−2|A|+ · · ·+ |A|k−1),

= (x2− x1)× (Bk−1 +Bk−2|A|+ · · ·+ |A|k−1),

≥ |A|k−1.

y2− y1 ≥ |x1 +α|k−1,

(y2− y1)
1

k−1 ≥ |x1 +α|,

−(y2− y1)
1

k−1 − x1 ≤ α ≤ (y2− y1)
1

k−1 − x1.

4.4.6 Case 6 — [A> 0,B< 0] [k even]

With these constraints, and k odd,

y2− y1 = Bk−Ak,

= |B|k−Ak.

Now, WLOG, assume that |B|> A. Therefore,

0 < y2− y1 = |B|k−Ak,

= (|B|−A)× (|B|k−1 + |B|k−2A+ · · ·+Ak−1),

= (x2− x1)× (|B|k−1 + |B|k−2A+ · · ·+Ak−1),

≥ |B|k−1.
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y2− y1 ≥ |B|k−1,

y2− y1 ≥ |x2 +α|k−1,

(y2− y1)
1

k−1 ≥ |x2 +α|,

−(y2− y1)
1

k−1 − x2 ≤ α ≤ (y2− y1)
1

k−1 − x2.

4.4.7 Case 7 — [A,B< 0] [k even]
The last case for even k, with these constraints, are as follows:

y2− y1 = Bk−Ak,

= |B|k−|A|k.

At this point, WLOG, assume that |B|> |A|. Therefore,

0 < y2− y1 = |B|k−|A|k,

= (|B|− |A|)× (|B|k−1 + |B|k−2|A|+ · · ·+ |A|k−1),

= (x2− x1)× (|B|k−1 + |B|k−2|A|+ · · ·+ |A|k−1),

≥ |B|k−1.

This will produce the same results as Case 6, where the lower and upper bounds are con-
strained by

y2− y1 ≥ |B|k−1,

y2− y1 ≥ |x2 +α|k−1,

(y2− y1)
1

k−1 ≥ |x2 +α|,

−(y2− y1)
1

k−1 − x2 ≤ α ≤ (y2− y1)
1

k−1 − x2.
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4.4.8 Summary of Inequality Analysis
The results obtained from the seven cases are summarized in Table 4.1.

Table 4.1: Summary of α Boundaries

Case Polarity of A, B Parity of k Boundaries of α

1 A> B> 0 N.A. −(y1−y2
x1−x2

)
1

k−1 − x1 ≤ α ≤ (y1−y2
x1−x2

)
1

k−1 − x1

2 A< 0,B> 0,Bk > |A|k Odd −(y2− y1)
1
k − x2 ≤ α ≤ (y2− y1)

1
k − x2

3 A> 0,B< 0,Ak > |B|k Odd −(y1− y2)
1
k − x1 ≤ α ≤ (y1− y2)

1
k − x1

4 A,B< 0, |A|> |B| Odd −(y2− y1)
1

k−1 − x1 ≤ α ≤ (y2− y1)
1

k−1 − x1

5 A< 0,B> 0,B> |A| Even −(y2− y1)
1

k−1 − x1 ≤ α ≤ (y2− y1)
1

k−1 − x1

6 A> 0,B< 0, |B|> A Even −(y2− y1)
1

k−1 − x2 ≤ α ≤ (y2− y1)
1

k−1 − x2

7 A,B< 0, |B|> |A| Even −(y2− y1)
1

k−1 − x2 ≤ α ≤ (y2− y1)
1

k−1 − x2

4.5 Analysis of Bounds
The start state to form the lower and upper bounds is to take the difference between the
two y-values that were easily obtained publicly. For simpler calculations, a positive differ-
ence can be obtained by identifying the bigger component and then subtracting the smaller
component from it.

It was found that both the lower and upper bounds of α are constrained by the differences
in the kth or (k− 1)th root of the y-value differences and the x-variable, or vice versa,
depending on the assumption of whether Ak or Bk is larger.

The initial assumption was that computation may be easier with even values of k, since
even powers of positive or negative functions still produce positive results. However, it
was found that the factor that limits computational efficiency is the presence of absolute
values of either A or B. For absolute values, there is no easy way to determine whether the
actual result would be positive or negative, and hence the inequalities identity needed to be
applied in order to find the bounds of α .

The crux is that as long as two shares are gathered together, the value of α can be de-
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rived easily through exhaustive means. The computation is simplified even further if the
differences between the yi values found are small.

Once the value of α is found, it then remains to substitute back into the general equation
yi = (xi +α)k−b0 to determine b0. When b0 is found, it is trivial to find

f (x) = (x+α)k−b0,

f (0) = α
k−b0 = secret.

4.6 Cases over Finite Field Zp

Computing the above arithmetic over the infinite integer ring Z will result in large ranges
of α for which the initial polynomial can be expressed as the form f (x) = (x+α)k− b0.
If the above arithmetic is computed over the prime field Zp instead, then the polynomial
form of f (x) = (x+α)k− b0 could be achieved easier as many of the coefficients would
be reduced to 0 after performing modular arithmetic over the prime field. Thus, there is
justifiable motivation behind the modular prime arithmetic to reduce the ranges of α to be
finite and more manageable.

It was discussed earlier that the general equation f (x) = a0 + a1x+ · · ·+ akxk can be ex-
pressed as

f (x) = (x+α)k−b0,

=

[
xk +

(
k
1

)
x(k−1)

α
1 +

(
k
2

)
x(k−2)

α
2 + · · ·+α

k
]
−b0,

=

[
xk +

k−1

∑
i=1

cix(k−i)+α
k

]
−b0.

Computing arithmetic over Zk, where k is prime, gives the following result:

f (x) = xk +α
k−b0.

And the secret is recovered as f (0) = αk−b0.
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4.7 Computational Example
A computational example is used to illustrate the effectiveness of the analysis.

4.7.1 Trivial Case
The following {3,n} example has n shares and a threshold of 3 with n participants and 1
dealer. Consider the quadratic (degree 3−1 = 2) polynomial generated by the dealer to be

f (x) = 7+4x+ x2.

The dealer then generates the following n shares to be released to the public, namely
(1,12),(2,19),(3,28),(4,39),(5,52),(6,67) · · ·(xn,yn). It is only necessary to find any
combination of two shares to determine the value of α .

For example, if two shares, Share#1 (2,19) and Share#2 (4,39), are found by any individ-
ual, the general equation f (x) = (x+α)k−b0 can be used as a base, and the public share
values that were obtained can be substituted into the general equation:

GeneralEqn : f (x) = (x+α)k−b0,

Share#1 : 19 = (2+α)k−b0,

Share#2 : 39 = (4+α)k−b0,

Share#2−Share#1 : 20 = (4+α)k− (2+α)k

In this trivial example, if the dealer dictated that any two shares are enough to recover the
secret (k+1 = 3), then finding the value of α is trivial, as one could use the difference of
squares factoring. In the case of k = 2, then

20 = (4+α)2− (2+α)2,

= (4+α +2+α)× (4+α−2−α),

= (6+2α)× (2).

∴ α = 2.
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Computing b0,

b0 = (2+α)2−19,

= (2+2)2−19,

=−3,

which gives the secret as

f (0) = (0+2)2− (−3),

= 7.

4.7.2 General Cases of k
Consider another numerical example, a {4,n} threshold scheme, where the dealer-
generated polynomial is

f (x) = x3 +6x2 +12x+5.

The secret is, of course, S = a0 = 5. The public shares generated, of the form (xi,yi), are
(1,24),(2,61),(3,122),(4,213),(5,340), · · · ,(xn,yn). Assuming that two random shares,
(1,24) and (3,122), are obtained by an eavesdropper, and the eavesdropper decomposes
the public shares into the generalized formula yi = (xi+α)k−b0 for secret recovery, where
k = 3,

24 = (1+α)3−b0,

122 = (3+α)3−b0,

∴ (122−24) = (3+α)3− (1+α)3. (4.8)

This essentially gives a cubic polynomial to solve for the value of α .

Next, consider the general case for k values. For a {k+1,n} threshold scheme, the gener-
alized form is

yi− y j = (xi +α)k− (x j +α)k. (4.9)

The problem now reduces to finding the value of α , and it can be challenging depending
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on how large k is.

The analysis provided a convenient reference table in Table 4.1. In the numerical example
in this section, the boundaries of α would be one of Cases 2, 3, or 4 (with k odd). Hence,
α satisfies one of the following inequalities (Case 2 = Case 4):

−(y2− y1)
1
k − x2 ≤ α ≤ (y2− y1)

1
k − x2,

or
−(y1− y2)

1
k−1 − x1 ≤ α ≤ (y1− y2)

1
k−1 − x1.

Substituting all the known values from the public shares, and combining all the known
information, the following is obtained:

3
√
−98−3≤ α ≤ 3

√
98−3.

Since α is an integer, the ceiling of the bounds is taken and the following is obtained:

−8≤ α ≤ 2.

With these values of α , the value of b0 can be found easily. Table 4.2 shows the values
found from the iteration.
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Table 4.2: Possible Secret Values

α b0 Secret = f (0) = (α)k−b0

-8 -367 -145
-7 -240 -103
-6 -149 -67
-5 -88 -37
-4 -51 -13
-3 -32 5
-2 -25 17
-1 -24 23
0 -23 23
1 -16 17
2 3 5

It is easy to compute from Eqn. (4.8) that α = 2, and therein lies the secret value S =

a0 = 5. From Table 4.2, the eavesdropper knows that the secret is one of the 11 values
of f (0). Hence, from an infinite number of choices (or a large finite number of choices),
with just two known shares, the eavesdropper has reduced the number of secret possibilities
drastically.
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4.7.3 Common Factors in Polynomial Coefficients
The significance of α can be related in the generalized form of f (x) = (x+α)k−b0. If the
dealer-generated polynomial contains coefficients that have a common factor(s), then it is
clear that α can take on the values of the common factor(s). This observation came from
the fact that the generalized form of f (x) is essentially a binomial expansion of the first
term, and hence, the dealer needed to be careful when randomly generating the coefficients
to form the polynomial for secret sharing.

The above finding leads to another observation. If the dealer generates a polynomial con-
taining prime coefficients, then the generalized system derived from this thesis would not
be applicable, as there are no common factors in prime coefficients.

4.7.4 Outcome
In a bid to continue finding ways to simplify a given polynomial to linear or monic form,
the Fundamental Theorem of Algebra [3, pp. 254, 288] is referenced. The theorem
states that any polynomial f (x), can be factorized over the complex number field C, as
f (x) = an ∏

n
i=1(x−αi), where n is the degree of the polynomial f (x). For this analysis,

by extension, this essentially means that any given dealer-generated polynomial (including
non-monic polynomials) can be reduced to monic polynomials such that the generalized
form of f (x) = (x+α)k−b0 can be applied to reconstruct the secret from just two public
shares.

It was claimed, and found, that not all monic polynomials can be reduced to the general
form as proposed in this thesis. For non-monic polynomials, an eavesdropper or outsider
can attempt to transform the polynomial to either a non-linear, or a monic polynomial form.
Opportunities for future work of this nature are discussed in Chapter 6.

Therefore, it is important for the dealer to generate the secret polynomial with coefficients
that do not contain a common factor. More often than not, the common factor could be the
value of α for an eavesdropper or outsider whose main purpose is to reconstruct the secret
efficiently by using only two public shares that are obtained easily.
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CHAPTER 5:
Side-Channel Effect on AES

In cryptography, instead of gaining access to a cryptosystem through its algorithm, side-
channel attacks are any form of attacks that are based on any viable information from the
physical implementation of such a cryptosystem. Common physical parameters, including
power consumption, timing codes, and operating noise level, can be used to provide a
means of breaking into and crippling the cryptosystem.

This section discusses how the algorithms derived in Chapter 4 can be utilised to guard
against side-channel attacks.

5.1 Cryptographic Complexity
A variation of a secret sharing scheme without the use of a cryptographic key is elaborated
here.

• Encode the desired secret Kp to be an arbitrary binary string of length l.
• Generate n random binary numbers A1,A2, · · · ,An, whose bit lengths are equal to the

size of the secret key Kp, that is, also of length l.
• Give to each participant one of A1,A2, · · · ,An−1, except for the last participant who

receives the result of the following XOR function (Kp⊕A1⊕A2⊕·· ·⊕An−1).
• The secret can thus be recovered by gathering all of the participants’ values and

performing ⊕ operations on all of them.

This exclusive-or (XOR) variation, however, requires that all of the shares be pooled to-
gether in order to recover the secret key Kp. Compared to SSSS, this XOR method is
relatively more straightforward, but offers a higher level of security since all of the partici-
pants’ shares need to be present in order to recover the secret.

Blakley [2] made use of the properties of space dimensions to implement his idea of an
ideal secret sharing scheme. In a three-dimensional space, three non-parallel planes will
intersect at a specific point, and that point of intersection constitutes the desired secret. In
a {3,n} threshold scheme, where three shares are required to recover the secret, one can
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still obtain some information about the secret. Graphically, this can be viewed as having
information about the intersection of two non-parallel planes, which produces a line. The
secret is thus narrowed down to an arbitrary point along the line, which can be easily
recovered by substituting all the known axis values into the equation of the intersected line.

The algorithm and reasoning described in Chapter 4 made use of the fact that the secret
can eventually be recovered when partial information regarding the shares is known. The
principle behind forming the inequalities is to apply viable heuristics to narrow down the
possibilities of unknown factors to a manageable size and then to recover the secret using
exhaustive search methodologies.

5.2 Cryptographic Attacks
Chapter 2 described the importance of the dealer. Here, the importance of the dealer is am-
plified again during cryptographic attacks, where cyber attackers could hack into unsecured
systems through side-channel attacks and steal the shares that should remain privy to only
the participants. Since it would be impractical to regenerate the secret, uncompromised
shares could still be updated and renewed to generate new shares for the participants. The
non-updated shares that the attackers possess would become useless unless the attackers
continue to obtain enough non-updated shares to reach the original threshold. The attack-
ers would not be able to gain much information if they were to steal the updated shares
since these updated shares provide only random information to the attackers. The dealer,
in this scenario, possesses the ability to renew the shares, and in the process, render the
non-updated shares irrelevant.

5.3 AES
In 2001, the Secretary of Commerce approved and issued the Federal Information Pro-
cessing Standards Publications (FIPS PUBS) detailing the AES that can be used to pro-
tect electronic data. Essentially, AES refers to a symmetric block cipher that can encrypt
(encipher) and decrypt (decipher) information. Importantly, current AES algorithms are
capable of using cryptographic keys of 128, 192, and 256 bits to encrypt and decrypt data
in 128-bit blocks. The current AES became effective from 2001 onwards [12]. In par-
ticular, the current AES is a block cipher that iterates ten cycles of repetitions of trans-
formation rounds, with each of these transformation rounds involving the four stages of
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AddRoundKey, Shi f tRows, MixColumn, and SubByte, thus ensuring and enhancing the
security.

5.4 Implementing AES with SSSS
Goubin and Martinelli [13], in 2011, proposed an original masking scheme that is based
on SSSS that served as an alternative to Boolean masking. Goubin’s scheme built upon a
credible complexity-security trade-off compared to Boolean masking. Typically, the pro-
posed SSSS masking is centered around the signal-to-noise ratio (SNR) generated by the
crypto application. For example, applications involving smart card implementation tend to
have a higher SNR, and it was found that the first-order of SSSS masking provided better
security and less complexity than third-order Boolean masking. For hardware implemen-
tations where the noise can be reduced drastically, the same first-order of SSSS masking
can produce results that are comparable to the fourth-order of Boolean masking, thereby
amplifying the advantages of SSSS masking for applications of low SNR.

Following Goubin and Martinelli’s [13] claim of better efficiency in their proposed scheme
of SSSS masking versus Boolean masking, Coron et al. [14], in 2013, exhibited a flaw in
this scheme by proving that the scheme can always be broken by a first-order side-channel
analysis (SCA). In addition, Coron et al. proposed an improvement to the evaluation
of the k-degree polynomial using Discrete Fourier Transformation (DFT) that reduces the
evaluation time taken from O(n2) to O(n), thereby effectively reducing the complexity
from third order to second order.

Consider the success of reducing the computational complexity of manipulating a kth-
degree polynomial into a manageable polynomial of the form f (x) = (x+α)k− b0, with
smaller cardinality. The masking field operations in [13] similarly introduced two sensitive
variables b and u following SSSS. The XOR operation with the second variable u was
used to mask the sensitive variable b, where b = (xi,yi),0≤ i≤ k(degree) in the following
manner:

(x′i,y
′
i)← (xi,yi⊕u).

Multiplication by any scalar c will yield the following:

(x′i,y
′
i)← (xi,yi · c).
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Working in a field of characteristic 2 squaring is GF(256)-linear:

(x′i,y
′
i)← (x2

i ,y
2
i ).

Here, it is noted that the product of two newly introduced variables that are protected by
any secret sharing scheme cannot be solved using any algebraic transformation that is linear
in nature, since taking the product of two kth-degree polynomials will yield a polynomial
with at most 2k degree in this finite field. In such cases, linear approximation will not be
possible.

In the same research paper, Goubin and Martinelli [13] also stated that the security of SSSS
against any form of SCA is based on the following selected points:

• For polynomial interpolation, at least (k+1) shares are required to define a polyno-
mial of degree k.
• The computation of li(x) is independent of any secret share that can be found.

Through these findings by Goubin and Martinelli, the analysis in the earlier chapters can
be similarly extended to the following:

• The computation of li(x), and subsequently the secret, is independent of any public
shares that can be obtained.

5.5 Monic Generator Polynomial for Secret Sharing
The analysis in Chapter 4 provides an alternate methodology to recover the secret with
less-than-expected available information. It effectively reduces the evaluation of the monic
polynomial to O(n), since only linear algebra is involved. The objective of reducing the
linearity is due to the fact that linear equations are easier to solve, which is the main moti-
vation behind cryptanalysts’ desire to approximate non-linear components with linear ones.

Although the coefficients could be generated randomly, from a security perspective, the
level of security can be elevated by carefully choosing the coefficients of the generated
polynomial. For improved security, the dealer should avoid generating the polynomial
using successive binomial integers as its polynomial coefficients. This further amplifies the
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importance of the dealer when generating the polynomial for secret sharing.
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CHAPTER 6:
Conclusion

6.1 The Perfect Secret Sharing Scheme
A lot of research has focused on the creation of a perfect secret sharing scheme. There are
no known weaknesses of Shamir’s Secret Sharing Scheme, other than the computational
inefficiency if the generated polynomial comprises large degrees. While many improvised
secret sharing schemes have proven more effective than SSSS, they have only been better
under certain parameters; there is always a trade-off with some parameter of the scheme.

6.2 Future Work
Further research can be done in the following fields to enhance the efficiency of the current
SSSS.

6.2.1 Ramp Secret Sharing
Ramp secret sharing involves the gradual leakage of information, subjected to a dealer-
generated polynomial of degree (t + l−1), where t participants have no information at the
beginning. As each additional share is leaked subsequently, the bits of information that can
be deciphered per share is calculated to be equal to logq bits. This means that only (t + l)

participants can recover all secrets. This is also known as a (t, t + l,n) ramp scheme, where
n≤ q− l.

If the dealer-generated polynomial in ramp secret sharing schemes can also be reduced to
the generalized form f (x) = (x+α)k− b0 or the equivalent, then it may prove to be suf-
ficient to obtain just two shares, and the secret can be recovered easily through exhaustive
means of substituting the value of α .

6.2.2 Prime Numbers as Polynomial Coefficients
The dealer-generated polynomial comprises random integer coefficients. An in-depth
research of prime coefficients may yield different approaches to recovering the secret
because the monic polynomial now cannot be easily reduced to the generalized form
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f (x) = (x+α)k−b0 or the equivalent, since each of the prime coefficients (p1, p2, · · · , pn)

can only yield 0 when performing mod (p1, p2, · · · , pn), respectively.

6.2.3 Composite Functions of Polynomials and the Fundamental The-
orem of Algebra

In Section 2.3, the composite function of f (x) = h(x) ◦ g(x) was mooted as an alternate
form to simplify the mechanics of SSSS. The function g(x) was assumed to be linear, and
hence, allowed the generalised form upon which this thesis analysis is based. Consider the
alternate form where the dealer-generated polynomial h(x) can be expressed in the form
f (x) = a0× (x−α)k × (x− β )k, by applying another linear function g(x). This is also
known as the Fundamental Theorem of Algebra.
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APPENDIX: Diffie-Hellman Key Exchange

A.1 What Is Diffie-Hellman (D-H) Key Exchange?

In cryptography, Diffie-Hellman (D-H) key exchange is an encryption algorithm that is
implemented to establish a secret between two parties. This form of key exchange is
very prevalent in real-world symmetric encryption algorithms such as the Rivest-Shamir-
Adleman (RSA) algorithm. It is a specific method of exchanging cryptographic keys over
a public channel, but is only decipherable by the relevant parties.

The mechanics of the D-H key exchange is illustrated as such:

• Say Albert and Bernard wanted to establish a secret s, among themselves, but do not
want anyone else to know about the secret.
• First, both parties have to agree on a prime number p, and a base g. Note that g is a

primitive root modulo p.
• Albert then chooses a secret integer a, which only he himself knows, and computes

A = ga (mod p).
• Bernard, like Albert, also chooses a secret integer b, which only he himself knows,

and computes B = gb (mod p).
• Albert then sends the value of A to Bernard, and likewise, Bernard sends the value of

B to Albert.
• To recompute the shared secret s, Albert computes s = Ba (mod p), and likewise,

Bernard computes s = Ab (mod p) to obtain the secret s.

This algorithm is secure because the values of a and b are secure and known only to the
relevant parties. All other values can be sent in the clear, and potentially be intercepted by
other eavesdropper parties, but the eavesdropper parties will not be able to decrypt the code
due to the lack of knowledge of a and b.

A.1.1 Example

• Albert and Bernard agree on p = 23, and g = 5, where 5 is a primitive root modulo
23.
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• Albert chooses secret integer a= 9, and computes A= ga (mod p)= 59 (mod 23)=
12.
• Bernard chooses secret integer b = 13, and computes B = gb (mod p) = 513

(mod 23) = 2.
• Albert sends A = 12 to Bernard, and receives B = 2 from Bernard.
• Albert then recomputes the secret s = Ba (mod p) = 29 (mod 23) = 6, and Bernard

computes the secret s = Ab (mod p) = 1213 (mod 23) = 6.

The secret s = 6 can then be used as an encryption key (which is only known to the both of
them) to send messages across open communications channels.

The D-H key exchange algorithm works because of the properties of modulo exponents:

Ab (mod p) = (ga (mod p))bmod p = gab (mod p),

Ba (mod p) = (gb (mod p))amod p = gba (mod p),

gab (mod p) = gba (mod p).

Note that for this key-exchange algorithm to work, the base g must be chosen to be a
primitive root, or a generator of prime p.

40



List of References

[1] A. Shamir, “How to share a secret,” Commun. of the ACM, vol. 22, no. 11, pp. 612–
613, 1979.

[2] G. R. Blakley et al., “Safeguarding cryptographic keys,” in Proceedings 
of the National Computer Conference, vol. 48, 1979, pp. 313–317.

[3] J. B. Fraleigh, A First Course in Abstract Algebra, 7th ed. Pearson
Education India, 2003.

[4] A. Herschfeld, “The equation 2x− 3y = d,” Bulletin of the American Mathematical
Society, vol. 42, no. 4, pp. 231–234, 1936.

[5] M. Waldschmidt, “Perfect powers: Pillai’s works and their developments,” Collected
Works of S.S. Pillai, vol. I, R.Balasubramaniam and R. Thangadurai, Eds. India: Ra-
manujan Mathematical Society, pp. xxii–xlvii, 2009.

[6] R. Stroeker and R. Tijdeman, “Diophantine equations,” Mathematisch Centrum
Computational Methods in Number Theory, Pt. 2 p 321-369 (SEE N 84-17999 
08-67), 1982.

[7] R. Taylor and A. Wiles, “Ring-theoretic properties of certain Hecke algebras,” An-
nals of Mathematics, pp. 553–572, 1995.
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